Department of Nucleic Acids Chemistry


 

Head:


Prof. dr hab. Adam Kraszewski

 


Pracownicy:


Prof. dr hab. Jacek Stawiński, professor emeritus

 


 
 

Fig. 1


 

Fig. 2


 

Fig. 3


 

Fig. 4

 

Key words:


Nucleic acids; chemical synthesis; structure determination; nucleotides; antiviral and anticancer pronucleotides; organic chemistry; bioorganic phosphorus chemistry; H-phosphonate chemistry.

 

Research profile:

  • Mechanistic studies.
  • Development of new synthetic methods.
  • Stereochemistry of natural products containing phosphorus.
  • Designing and development of new therapeutic antiviral and anticancer agents.

 

Current research activity:

  • Design and development of new antiviral and anticancer pronucleotides as potential drugs.

 

Other activities:

  • Reviewers and experts in the field of nucleic acid chemistry and bioorganic phosphorus chemistry.
  • Teaching, lecturing, seminars and consultations for PhD students within the framework of the Inter-Institutional Graduate School at the Institute of Bioorganic Chemistry Polish Academy of Sciences.

 

The most important research achievements:

  • Expertize in organic chemistry, nucleotide chemistry, and bioorganic phosphorus chemistry.
  • Over 400 original and review papers (including Nature i Proc. Natl. Acad. Sci. USA) on nucleotide chemistry, bioorganic chemistry, and molecular biology (e.g. first synthesis of biologically active regulatory gene lac-operator, first chemical synthesis of human insulin gene).
  • Members of this Department are established leaders in development of H-phosphonate methodologies for the synthesis of biologically important phosphorus compounds.

 

Current research projects:


At present, the Department  is involved in statutory research of the Institute.

 

Selected publications:

  1. Clone synthetic lac operator is biologically active
    K.J. Marians, R. Wu, J. Stawinski, T. Hozumi, S. A. Narang. Nature, 263, 744-748, 1976.
  2. Minimal length of the lactose operator sequence for the specific recognition by the lactose repressor.
    C. P. Bahl, R. Wu, J. Stawinski, S. A. Narang. Proc. Natl. Acad. Sci. USA74(3), 966-970, 1977
  3. The chemical synthesis of the anticodon loop of an eukaryotic initiator tRNA containing the hypermodified nucleoside N6/N-threonylcarbonyl/-adenosine/t6A/
    R.W. Adamiak, E. Biała, K. Grześkowiak, R. Kierzek, A. Kraszewski, W.T. Markiewicz, J. Okupniak, J. Stawiński and M. Wiewiórowski. Nucleic Acids Research. 5(6) 1889-1905, 1978
  4. Chemical synthesis of genes for human insulin. R. Crea, A. Kraszewski, T. Hirose, K. Itakura,
    Proc. Natl. Acad. Sci. USA Vol. 75, No. 12, pp. 5765-5769, 1978
  5. Expression in Escherichia coli of chemically synthesized genes for human insulin (plasmid construction/lac operon/fused proteins/radioimmunoassay/peptide purification)
    D. V. Goeddel, D. G. Kleid, F. Bolivar, H. L. Heyneker, D. G. Yansura, R. Crea, T. Hirose,
    A. Kraszewski, K. Itakura, A. D. Riggs. Proc. Natl. Acad. Sci. USA 76(1), 106-110, 1979
  6. Nucleoside H-Phosphonates III. Chemical Synthesis of Oligodeoxynucleotides by the Hydrogenphosphonate Approach. P. Garegg. I. Lindh. T. Regberg, J. Stawinski, R. Stromberg.
    Tetrahedron Letters, 27(34),pp 4051-4054,1986.
  7. Nucleoside H-Phosphonates. 8. Activation of Hydrogen Phosphonate Monoesters by Chlorophosphates and Arenesulfonyl Derivatives.
    P. J. Garegg, J. Stawinski, R. Stromberg. J. Org. Chem. 1987,52, 284-287
  8. Studies on the Activation Pathway of Phosphonic Acid using Acyl Chlorides as Activators
    J. Stawinski and M. Thelin. J. Chem. Soc. Perkin Trans. 2 1990 849-853
  9. Nucleoside H-Phosphonates. 14. Synthesis of Nucleoside Phosphoroselenoates and Phosphorothioselenoates via Stereospecific Selenization of the Corresponding H-Phosphonate and H-Phosphonothioate Diesters with the Aid of New Selenium-Transfer Reagent, 3H-1,2-Benzothiaselenol-3-, J. Stawinski, M. Thelin. J. Org. Chem. 1994,59, 130-136
  10. Aryl H-Phosphonates. Part IV. A new method for internucleotide bond formation based on transesterification of aryl nucleoside H-phosphonate diesters
    J. Cieslak, M. Sobkowski, A. Kraszewski J. Stawinski. Tet. Lett., 37(26), 4561-4564, 1996.
  11. Aryl H-Phosphonates. 6. Synthetic Studies on the Preparation of Nucleoside N-Alkyl-H-phosphonamidates.
    A. Sobkowska, M. Sobkowski, J. Cieslak, and A. Kraszewski, I. Kers, J. Stawiński
    J. Org. Chem. 1997, 62, 4791-4794
  12. How to get most out of two phosphorus chemistries. Studies on H-phosphonates.
    J. Stawiński, A. Kraszewski. Acc. Chem. Res. 2002, 35, 952-960
  13. H-Phosphonates: Versatile synthetic precursors to biologically active compounds.
    A. Kraszewski, J. Stawinski. Pure Appl. Chem., 79(12), 2217-2227, 2007
  14. Aryl H-Phosphonates 17: (N-Aryl)phosphoramidates of Pyrimidine Nucleoside Analogues and Their Synthesis, Selected Properties, and Anti-HIV Activity.
    J. Romanowska, M. Sobkowski, A. Szymanska-Michalak, K. Kolodziej, A. Dąbrowska, A. Lipniacki, A. Piasek, Z. M. Pietrusiewicz, M. Figlerowicz, A. Guranowski, J. Boryski, J. Stawinski, and A. Kraszewski. J. Med. Chem., 2011, 54, 6482–6491
  15. Nucleoside 30,50-Cyclic H‑Phosphonates, New Useful Precursors for the Synthesis of Nucleoside 30,50-Cyclic Phosphates and Their Analogues
    M. Rozniewska, J. Stawinski, A. Kraszewski. Org. Lett. 2013, 15(16), 4082–4085
  16. Recent Advances in H-Phosphonate Chemistry. Part 1. H-Phosphonate Esters: Synthesis and Basic Reactions.
    M. Sobkowski, A. Kraszewski, and J. Stawinski. Top Curr Chem (2015) 361: 137–178
  17. Recent Advances in H-Phosphonate Chemistry. Part 2. Synthesis of C-Phosphonate Derivatives.
    M. Sobkowski, A. Kraszewski, and J. Stawinski. Top Curr Chem., (2015) 361: 179–216
  18. New 3′-O-aromatic acyl-5-fluoro-2′-deoxyuridine derivatives as potential anticancer agents.
    A. Szymanska-Michalak, D. Wawrzyniak, G. Framski, M. Kujda, P. Zgoła, J. Stawinski, J. Barciszewski, J. Boryski, A. Kraszewski. Eur. J. Med. Chem., 2016, 15(10), 41-52.