2. Studia literaturowe

Struktura oraz preferencje konformacyjne nukleozydów i ich analogów w ciele stałym

2.1. Ogólna charakterystyka właściwości strukturalnych nukleozydów

W niniejszym rozdziale szczegółowo przedstawię stan wiedzy na temat struktury przestrzennej nukleozydów. Głównym źródłem informacji była dzieło Wolframa Saengera "Principles of Nucleic Acid Structure" (Springer-Verlag New York Inc 1984) oraz wybrane publikacje dotyczące omawianego problemu.

2.1.1. Geometria części zasadowej

Liczne dane krystalograficzne nukleozydów wskazują, że wszystkie atomy układu heterocyklicznego imidazo[4,5-d]pirymidyny (adenozyna, guanozyna) oraz układu heterocyklicznego pirymidyn (cytydyna, urydyna i tymidyna) leżą w jednej płaszczyźnie.³³ Istnieją rzadkie przykłady odstępstwa od planarności części zasadowej zaobserwowane w nukleozydach purynowych pomiędzy płaszczyznami tworzonymi przez pierścienie imidazolu i pirymidyny. Prostopadłe do tych płaszczyzn przecinają się, tworząc niewielki kąt wynoszący od 0.5° do 1°.^{34,35}

Wiązanie pomiędzy grupą aminową a układem heterocyklicznym puryny i cytozyny jest znacznie krótsze od wiązania C-N w układach alifatycznych (1.472(5) Å) i wynosi 1.34(1) Å.³⁶ Sugeruje to istnienie częściowo podwójnego charakteru wiązania C-NH₂ ³⁷ dla którego obliczony rząd wiązania podwójnego mieści się w zakresie 0.41-0.47 ³⁸ przyjmując pośredni charakter pomiędzy wiązaniem podwójnym a pojedynczym. Obecność częściowo podwójnego charakteru wiązania C-NH₂ implikuje pojawienie się bariery rotacyjnej wymuszając przyjęcie orientacji koplanarnej przez egzocykliczną grupę aminową w stosunku do układu heterocyklicznego zasady. Wysokość bariery rotacji wiązania C-N uzyskana na podstawie obliczeń kwantowo-mechanicznych (CNDO/2) wynosiła od 15 do 25 kcal/mol w zależności od obecności wodoru lub grupy metylowej na egzocyklicznym atomie azotu w pochodnych cytozyny ³⁹, adeniny ⁴⁰ i guaniny ⁴⁰. Dane uzyskane na drodze eksperymentów NMR wskazują na niższą wartość bariery rotacji dla puryn w porównaniu z cytozyną ⁴¹ wynoszącą od 15 do 18 kcal/mol.⁴² Warto podkreślić iż obecność w bliskim sąsiedztwie grup metylowych w 1,5,N⁴,N⁴-tetrametylocytozyne nie wymusza w sposób wyraźny obrotu wokół

wiązania C⁴-N(CH₃)₂ wskutek sterycznego odpychania między grupami metylowymi, tym samym zachowując koplanarność heterocyklicznego układu z atomami węgla egzocyklicznego podstawnika N⁴,N⁴-dimetyloaminowego. Analiza rentgenostrukturalna 1,5,N⁴,N⁴-tetrametylocytozyny wykazała przyrost wartości kątów endocyklicznych N⁴-C4-C5 i C4-C5-CH₃ o odpowiednio 4.2° i 7.9° ^{43,44} w stosunku do 1-podstawionej cytozyny.

Długość egzocyklicznego wiązania C-O w części zasadowej pirymidyn oraz guaniny wynosząca pomiędzy 1.22(1) Å-1.24(1)Å jest bardzo zbliżona do długości klasycznego wiązania podwójnego C=O [1.215(5)Å]. W porównaniu do egzocyklicznego wiązania C-NH₂ puryn i cytozyny, udział podwójnego charakteru w wiązaniu C-O jest zdecydowanie większy wynosząc od 0.84 do 0.89, wskazując na obecność tautomerycznej formy laktamowej.³⁸ Obecność dodatkowych grup funkcyjnych oraz wzajemne ułożenie w jednej płaszczyznie

atomów azotu i węgla na różnych stopniach hybrydyzacji w układach heterocyklicznych puryn i pirymidyn powoduje wyraźne zróżnicowanie kątów endocyklicznych oraz długości

poszczególnych wiązań.⁴⁵ (Rysunek 2) Przykładowo wiazanie C2-N3 oraz N3-C4 w układzie puryn jest krótsze od odpowiadającego im wiązania N1-C2 i N1-C6 układu pirymidyn. Natomiast wiązanie C4-C5 zasady purynowej jest dłuższe od analogicznego wiązania C5-C6 w układzie pirymidyn. Ponadto w układzie puryn wiązanie N7-C8 jest wyraźnie krótsze od wiązania C8-N9, wskazując na zdecydowanie większy udział podwójnego wiązania w N7-C8 w porównaniu C8-N9. Interesujaca Ζ tendencję można zaobserwować

 Rysunek 2. Długości wiązań oraz kątów układu heterocyklicznego puryn i pirymidyn.
W. Saenger (1984), Principles of Nucleic Acids Structure; Springer-Verlag New York Inc, str.52

analizując zmiany wartości kątów endocyklicznych wokół atomów N.⁴⁶ Wielkość kąta tworzonego przez C6-N1-C2 w układzie puryn oraz C2-N3-C4 w układzie pirymidyn zależy od obecności lub braku podstawnika na atomie azotu N1 lub N3. Kąty te są większe średnio o 6° do 8° w przypadku obecności atomu wodoru na N1/N3 co ma miejsce odpowiednio w guanozynie i urydynie. Mniejszą różnicę w wielkości kąta wynoszącą od 2° do 3°, można również zaobserwować dla C5-N7-C8 w układzie imidazolu puryn. Omówione wyżej zmiany kątów walencyjnych w zależności od obecności lub braku podstawnika na atomie N kompensowane są zmianami w sąsiednich kątach N-C-C w celu utrzymania atomów układu

heterocyklicznego w jednej płaszczyznie.⁴⁶ Analogiczne zmiany mają miejsce w przypadkach w których zasada ulega protonacji lub deprotonacji co zostalo potwierdzone na przykładzie deprotonowanego uracylu (anion uracylu) oraz podwójnie protonowanej adeniny.⁴⁶

Rozkład gestości ładunków w części zasadowej nukleotydów obliczony metodą Del Re i Hůckla (udział cząstkowych odpowiednio σ - i π ładunków) oraz PCILO (ładunek całkowity)47 pozwoliło wytłumaczyć zachowanie się układu heterocyklicznego podczas tworzenia się wiązań wodorowych czyli parowania się zasad oraz oddziaływań z jonami metali. (Rysunek 3) Rozkład gęstości ładunków wskazuje na zbliżone wartości dodatnich ładunków σ +0.22*e* atomów wodoru grupy aminowej guanozyny, adenozyny i cytozyny sugerując lekko kwasowy charakter a tym samym funkcję donora. Nieco słabsze właściwości donorowe wykazują atomy wodoru na N3 uracylu oraz N1 guaniny, których ładunek wynosił σ +0.19*e*. Z kolei właściwości akceptorowe w wiązaniu wodorowym wykazują

Rysunek 3. Rozkład gęstości ładunków części zasadowej nukleotydów wg Del Re oraz Hückla. W. Saenger (1984), Principles of Nucleic Acids Structure; Springer-Verlag New York Inc, str.106

atomy N1, N3, N7 adenozyny, N3, N7, O⁶ w guanozynie, O² i O⁴ w urydynie/tymidynie oraz N3 i O² w cytydynie. Wszystkie wyżej wymienione atomy wykazują ujemny ładunek σ w zakresie od -0.47*e* (O² tymidyny) do -0.65*e* (N3 cytydyny).⁴⁷

W związku z wzajemnym ułożeniem heteroatomów w obrębie części zasadowej nukleozydów/nukleotydów istnieje możliwość migracji protonu z grupy N-H na tlen lub inny atom azotu. Prowadzi to do wystąpienia dwóch rodzajów tautomerii: keto⇔enolowej (guanozyna, urydyna, tymina) oraz amino⇔iminowej (adenozyna, cytozyna).⁴⁸ Zmiana lokalizacji atomu wodoru wskutek przejścia jednej formy tautomerycznej w drugą prowadzi do zmiany donorowego charakteru atomu azotu N1/N3 guanozyny/urydyny (forma keto) na akceptorowy (forma enolu). Równocześnie następuje zmiana charakteru akceptorowego atomu tlenu O⁶ guanozyny oraz O⁴ albo O² urydyny i tyminy na donorowy. Możliwość rotacji wokół wiązania C-O powoduje zmianę położenia atomu wodoru, prowadząc do zachowania roli akceptora przez atom tlenu. Analogiczna sytuacja ma miejsce na azocie w tautomerii amino⇔iminowej. (**Rysunek 4**)

Szczegółowe badania zjawiska tautomerii w nukleozydach pirymidynowych oraz purynowych za pomocą metod spektroskopowych UV, IR, NMR i rentgenostrukturalnych ⁴⁹ oraz obliczeń kwantowomechanicznych ⁵⁰ ujawniły zdecydowanie dominujący udział formy tautomerycznej keto i amino. Dla adenozyny oraz 1-metylouracylu udział formy keto i amino został oszacowany na wielkość 99,99%, powyższa przewaga została potwierdzona w szeregu rozpuszczalnikach o różnych stałych dielektrycznych.⁵¹

2.1.2. Pofałdowanie części cukrowej-koncepcja pseudorotacji

Dane krystalograficzne nukleozydów i nukleotydów jednoznacznie wskazują na niepłaski charakter układu pentofuranozy części cukrowej. Pięcioczłonowy pierścień furanozy może przyjąć dwa główne rodzaje konformacji: koperty (*E, envelope*) oraz skręconą/półkrzesłową (*T, twist*). W pierwszym przypadku jeden z pięciu atomów znajduje się w przybliżeniu o 0.5Å poza płaszczyzną utworzoną przez pozostałe cztery atomy, natomiast w drugim - dwa sąsiednie atomy pierścienia zajmują położenie po przeciwnych stronach płaszczyzny utworzonej przez pozostałe trzy atomy.⁵² W przypadku β,D-rybofuranozy oraz jej 2'-deoksy analogu, atomy uczestniczące w pofałdowaniu pierścienia mogą zająć pozycję po tej samej stronie co grupa 5'-CH₂OH określaną jako *endo* lub po przeciwnej - określanej wówczas jako *egzo*.⁵³

Opis wszystkich możliwych pofałdowań pięcioczłonowego pierścienia został ujęty w formie koncepcji pseudorotacji wprowadzonej przez J.E. Kilpatrick'a i wsp w celu wyjaśnienia nieokreśloności (*indefiniteness*) konformacji cyklopentanu wynikającej z swobody rotacji wokół wszystkich wiązań C-C.⁵⁴ K.S. Pitzer i wsp stwierdzili iż obecność

dodatkowych podstawników w badanych przez nich pochodnych cyklopentanu indukuje pojawienie się uprzywilejowanych energetycznie konformerów.⁵⁵ C. Altona i wsp rozwinęli badania konformacji asymetrycznie podstawionych układów pięcioczłonowych wiążąc wartości wszystkich pięciu kątów endocyklicznych w matematyczną zależność z dwoma parametrami: kąta fazowego pseudorotacji oraz maksymalnej amplitudy pofałdowania.⁵⁶ W późniejszej pracy C. Altona i M. Sundaralingam zaproponowali wykorzystanie tej metody po niewielkich modyfikacjach do przedstawienia konformacji części cukrowej nukleozydów za pomocą obu parametrów.⁶ W tej formie postać równań jest następująca:

 $\tan \mathbf{P} = \frac{(v_4 + v_1) - (v_3 + v_0)}{2 \times v_2 \times (\sin 36^\circ + \sin 72^\circ)} \qquad v_j = v_{\max} \times \cos(\mathbf{P} + j \times \varphi)$

P- kąt fazowy pseudorotacji, v₀- v₄ endocykliczne kąty torsyjne: v₀=C4'-O4'-C1'-C2', v₁=O4'-C1'-C2'-C3', v₂=C1'-C2'-C3'-C4', v₃=C2'-C3'-C4'-O4', v₄=C3'-C4'-O4'-C1' v_{max} – maksymalna amplituda pofałdowania, *j*=0 do 4, φ =144°.

Fizyczny sens tych parametrów jest następujący: P-wskazuje które atomy względnie atom pierścienia znajduje się poza płaszczyzną utworzoną przez pozostałe atomy nie uczestniczące w pofałdowaniu; vmax- wyraża stopień pofałdowania, i odpowiada maksymalnej wartości kąta torsyjnego. Zmiany wartości kąta fazowego pseudorotacji a tym samym cykl przejść wszystkich konformerów pierścienia pentofuranozy w nukleozydach można przedstawić w formie graficznej jako koło pseudorotacji. (Rysunek 1B) Generalnie na kole pseudorotacji wyróżnić można 36 struktur granicznych ("czystych" konformerów) z czego 18 reprezentuje pofałdowanie typu T (P jest wielokrotnością 36° i przyjmuje wartości 0°, 36°, 72°,...,324°), drugie 18 struktur reprezentuje pofałdowanie typu E (P przyjmuje wartości 18°, 54°, 90°,...,342°). Należy dodać, iż w literaturze znacznie częściej odnotowuje się struktury krystaliczne nukleozydów i ich pochodnych, w których pofałdowanie części cukrowej jest pośrednie pomiędzy konformerami granicznymi. Wówczas obserwuje się nierównomierne odchylenie atomów biorących udział w pofałdowaniu od płaszczyzny tworzonej przez pozostałe trzy atomy. Większe odchylenie od płaszczyny określane jest jako główne pofałdowanie (*major puckering*), natomiast mniejsze odchylenie jako mniejsze pofałdowanie (minor puckering). W dalszej części studiów literaturowych dla uproszczenia analizowania zebranego materiału zaliczałem pofałdowanie części cukrowej omawianego nukleozydu do jednej z struktur granicznych, w zależności do której z nich podana wartość kąta fazowego pseudorotacji dla danego nukleozydu była zbliżona.

H. P. M. De Leeuw, C. A. G. Hasnoot oraz C. Altona przeanalizowali dane krystalograficzne 178 rybo- oraz deoksyrybonukleozydów i ich pochodnych ujawniając nierównomierną dystrybucję obliczonego dla wszystkich struktur wartości kąta fazowego na

kole pseudorotacji.⁷ Autorzy w swej pracy wyróżnili dwa główne obszary występowania konformerów części cukrowej w zakresie wartości kata P od -1° do 34° (North) i od 137° do 194° (South), jakkolwiek obserwowane były również struktury posiadające konformery nie leżące w w/w zakresach kąta fazowego pseudorotacji. Preferencje konformacyjne części cukrowej nukleozydów można powiązać z dwoma faktami: niższą barierą rotacji wokół wiązania C-O w porównaniu z wiązaniem C-C ⁵⁷ oraz mniejszą podatnością na zmiany endocyklicznego kąta C-O-C w porównaniu z kątem C-C-C.58 W rezultacie endocykliczny kąt v_0 lub v_4 przyjmuje wartość około 0° powodując określony rodzaj pofałdowania odpowiednio C3'-endo/egzo lub C2'-endo/egzo. Generalnie, pofałdowanie C3'-endo oraz C2'-endo w przyblizeniu znajdują się w centrum powyższych zakresów wartości P.

Powyższe dane wskazują na możliwość istnienia dwóch przejść konformerami pomiędzy regionu North i South via region East lub West. Zmiany energii pierścienia rybozy i deoksyrybozy w zależności pofałdowania od rodzaju były przedmiotem licznych prac teoretycznych Z wykorzystaniem różnych metod obliczeniowych. 58-61 tych prac jednoznacznie Wyniki pokazały, iż z pośród wszystkich możliwych pofałdowań, konformery C3'-endo oraz C2'-endo sa najbardziej energetycznie uprzywilejowane oraz wysokość bariery energetycznej przy przejściu z C3'-endo do C2'-endo przez O4'-endo (East) jest zdecydowanie niższa aniżeli przez O4'-egzo (West). (Rysunek 5a, 5b) Należy dodać iż uzyskiwane wartości energii były znacząco różne W deoksyrybozy oraz 3.8 i 7.5 kcal/mol dla rybozy.

Rysunek 5. Zmiany energii całkowitej w zależności od P⁵⁸ zależności od zastosowanej metody obliczeniowej. W pracy 61 wysokość bariery energetycznej w regionie East i West wynoszą odpowiednio 1.8 i 5.8 kcal/mol dla 2'-

Wyniki eksperymentów NMR ujawniły istnienie szybkiej równowagi termodynamicznej pomiędzy konformerami C3'-*endo* (N) a C2'-*endo* (S) w roztworze. Położenie tej równowagi można w przybliżeniu określić na podstawie stosunku stałych sprzężeń ${}^{3}J_{1'2'}$ i ${}^{3}J_{3'4'}$ stosując następujące równanie: $K_{eq} \sim {}^{3}J_{1'2'} / {}^{3}J_{3'4'}$ 51 Wysokość bariery energetycznej interkonwersji pomiędzy obu konfomerami w roztworze określono na drodze eksperymentów 13 C NMR; dla rybonukleozydów purynowych wynosiła 4.7±0.5 kcal/mol.⁶²

Rezultaty licznych prac nad konformacją części cukrowej za pomocą pomiarów NMR ujawniły istnienie wpływu elektroujemności podstawnika w pozycji C2' lub C3' na położenie równowagi termodynamicznej C3'-endo (N) \Leftrightarrow C2'-endo (S) spowodowane większą tendencją do przyjmowania orientacji pseudoaksjalnej przez bardziej elektroujemny podstawnik.⁶³⁻⁶⁵ Szczegółowe badania nad C2' podstawionymi pochodnymi adenozyny ⁶⁶ i urydyny 67 jednoznacznie potwierdziły zależność populacji konformeru C3'-endo (N) od elektroujemności podstawnika w położeniu C2'. Powyższe zależności konformacyjne zostały w późniejszych pracach powiązane z efektem gauche.60,65 Generalnie efekt ten kieruje kąt torsviny X-C-C-Y (gdzie X, Y to elektroujemne podstawniki) w strone orientacji + lub gauche (odpowiednio + lub – synklinalna) jednocześnie unikając przyjęcia orientacji antyperiplanarnej.⁶⁵ Jakkolwiek pomiary spektroskopowe NMR w ND₃ pochodnych adenozyny posiadających grupę NH₂ w miejsce grupy 2'-OH lub 3'-OH ujawniły istnienie odwrotnego efektu.⁶⁸ Wytłumaczenie tej odmiennej preferencji można powiazać z znaczacym udziałem rozpuszczalnika (ND₃) w determinowaniu konformacji lub istnieniem dodatkowych oddziaływań w obrębie samej cząsteczki. Obecność wewnątrzcząsteczkowego wiązania wodorowego N2'-H····O3' w strukturze krystalicznej α-D-2'amino-2'-deoksyadenozyny (W. Saenger podaje że β , jednak publikacja dotyczyła α) pozwoliła przyjąć drugie wytłumaczenie za bardziej prawdopodobne.69

Pofałdowanie części cukrowej jest również determinowane przez modyfikacje części zasadowej.⁷⁰ Zależność ta jest szczególnie widoczna w sytuacji wymuszonej orientacji *syn* przez objętościowy podstawnik w pozycji C6 pirymidyn lub C8 puryn, co w większości przypadków koreluje z przyjęciem konformacji C2'*-endo*. Zastąpienie zasady grupą CH₃O-lub atomem H na anomerycznym atomie C1' pierścienia furanozy wymusza przyjęcie pofałdowania typu C3'*-endo*.⁷¹ Dodatkowych informacji dotyczących preferencji konformacyjnych pierścienia części cukrowej nukleozydów może dostarczyć porównanie geometrii pierścienia furanozy z jej macierzystą strukturą – tetrahydrofuranem (THF). Sumy uśrednionych kątów endocyklicznych tetrahydrofuranu⁷² oraz rybozy i 2'-deoksyrybozy obliczone na podstawie struktur krystalicznych konformerów C2' i C3'*-endo*,⁷³ są zbliżone.

(**Tabela 1a**) Natomiast długości wiązań C-C pierścienia części cukrowej są znacznie krótsze od analogicznych wiązań w THF ⁷², co jest spowodowane obecnością dodatkowych wiązań C-O w pozycji C2' i C3' oraz wiązaniem C-N na C1'. (**Tabela 1b**)⁷³ Podobną tendencję skracania wiązań C-C zaobserwowano w α-glukozie.⁷⁴

We wszystkich strukturach krystalicznych nukleozydów wiązanie C1'-O4' jest około 0.03 Å krótsze od C4'-O4' co tłumaczy się sprzężeniem wolnych par elektronowych atomu O4' z układem elektronów zasady. (**Tabela 1c**)⁷³ Na uwagę zasługuje fakt niewielkich zmian długości wiązań pierścienia rybozy i 2'-deoksyrybozy w zależności od rodzaju przyjmowanego pofałdowania (**Tabela 1b** i **1c**).

		THF	C2'-endo		C3'-endo		
			R	dR	R	dR	
Suma kątów		524.9°	524.7°	525.2°	525°	527.3°	
Tabela 1b.	Długości	wiązań C-C w	, THF, R i dR ⁷	3			
		C1'-C2'		C2'-C3'	C3'-C4'		
C2'-endo	R	1.526Å		1.528Å	1.526Å		
	dR	1.517Å		1.523Å	1.521Å		
C3'-endo	R	1.530Å		1.525Å	1.519Å		
	dR	1.526Å		1.527Å	1.526Å		
THF 1.53		7Å	1.537Å	1.537Å			
Tabela 1c.	Długości	wiązań C4'-O	4' i O4'-C1' w	R i dR ⁷³			
			C4'-O4' O4'-			1'	
C2'-endo	R	1.453Å			1.415Å		
	dR	1.447Å			1.420Å		
C3'-endo	R		1.449Å		1.409Å		
	dR	1.452Å			1.414Å		

Tabela 1a. Sumy uśrednionych kątów endocyklicznych dla THF, rybozy (R) i deoksyrybozy (dR)⁷³

Dane krystalograficzne nukleozydów, w których ryboza przyjmuje konformację C2'endo lub C3'-endo ujawniły istnienie zależności pomiędzy typem pofałdowania części cukrowej a długością wiązań C-O w pozycji C2' i C3' oraz wartościami kątów egzocyklicznych C-C-O. Wiązanie C2'-O2' jest krótsze w konformacji C2'-endo niż w C3'endo natomiast dla wiązania C3'-O3' stwierdzono tendencję odwrotną. (**Tabela 1d**)⁷³ Dla C2'-endo wartości kątów C3'-C2'-O2' i C1'-C2'-O2' są większe niż C2'-C3'-O3' i C4'-C3'-O3', odwrotna sytuacja występuje w pofałdowaniu C3'-endo. Zależności te sugerują zwiększenie udziału hybrydyzacji sp^2 na atomie węgla będącego poza płaszczyzną tworzonej przez pozostałe atomy węgla.⁷⁵

Tabela 1d. Długości wiązania C-O oraz kąty egzocykliczne wokół atomów C2' i C3' 73										
	C2'-O2'	C3'-O3'	C1'-C2'-O2'	C3'-C2'-O2'	C2'-C3'-O3'	C4'-C3'-O3'				
C2'-endo	1.409Å	1.424Å	112.7°	114.3°	110.0°	109.4°				
C3'-endo	1.419Å	1.414Å	107.7°	110.4°	114.1°	112.5°				

2.1.3. Orientacja zasady względem części cukrowej

Układ heterocykliczny zasady purynowej i pirymidynowej może przyjmować względem części cukrowej wskutek obrotu wokół wiązania glikozydowego dwie główne orientacje: syn i anti.⁷⁶ Umowny przedział występowania obu konformerów jest określany w odniesieniu do kąta torsyjnego χ tworzonego przez atomy O4'-C1'-N9-C4 dla nukleozydów purynowych oraz O4'-C1'-N1-C2 dla nukleozydów pirymidynowych. Według tej konwencji, w konformacji syn sześcioczłonowy fragment puryny oraz egzocykliczny atom tlenu O² pirymidyn znajduje się w bezpośrednim sąsiedztwie wiązania C1'-O4' lub nad pierścieniem D-rybozy lub 2'-deoksy-D-rybozy, czyli zajmuje orientację synklinalną (+ lub -) oraz synperiplanarną (zakresie kata χ : 270°, 0°, 90°, **Rysunek 1A**). W konformacji *anti* część cukrowa oraz układ sześcioczłonowy puryn lub egzocykliczny atom O² pirymidyny zajmują względem siebie orientację antyklinalną lub antyperiplanarną (zakres kata γ : 90°, 180°, 270°). jakkolwiek spotykane są struktury krystaliczne zarówno naturalnych jak i modyfikowanych nukleozydów w których wiązanie C1'-C2' części cukrowej zajmuje orientację synperiplanarną w odniesieniu do wiązania N1-C6 pirymidyny lub N8-C8 puryny. W takim przypadku przyjęto określać taką orientację jako *high anti* dla której kąt torsyjny χ przyjmuje wartość nieco większą niż 270°⁷⁷ i według notacji Klyne-Preloga odpowiada to orientacji -sc. Analogicznie, przyjęto określenie *high syn* w którym kąt torsyjny χ wynosi nieco powyżej 90° (+ac).

Analiza danych krystalograficznych nukleozydów ujawniła istnienie zależności między pofałdowaniem cukru a orientacją wokół wiązania glikozydowego χ. W nukleozydach purynowych posiadających konformację C2'-endo obserwuje się w przybliżeniu równomierny rozkład występowania orientacji syn i anti, natomiast dla konformeru C3'-endo -wyraźne zwiększenie udziału struktur krystalicznych o orientacji anti.⁷ W rybonukleozydach pirymidynowych dla których obserwowano orientację syn konformery C2'-endo i C3'-endo występują równomiernie. Z kolei dla orientacji anti pofałdowanie C3'-endo obecne jest w większości analizowanych struktur krystalicznych. Deoksyrybonukleozydy pirymidynowe przyjmujące orientację anti wykazują wyraźną preferencję do konformacji C2'-endo.⁷⁸

W 4-tiourydynie zaobserwowano stabilizację orientacji *syn* za pośrednictwem wiązań wodorowych wytworzonych przez cząsteczkę wody obecnej w strukturze kryształu wyhodowanego w środowisku wodnym.⁷⁹ Zmiana rozpuszczalnika na kwas masłowy prowadziła do otrzymania struktury kryształu z zachowaną orientacją *anti.*⁸⁰ Pofałdowanie części cukrowej w obu strukturach nieznacznie się róznią: C3'-*endo*-C4'-*egzo* ³T₄ dla orientacji *syn* natomiast C3'-*endo*, ³E dla orientacji *anti.*^{7,79} Interesującym faktem jest obserwacja, iż 4-tiourydyna w roztworze wodnym wykazuje preferencje do orientacji *anti.*⁸¹ Przykład ten obrazuje trudność w ustaleniu ogólnych tendencji przyjmowania określonych konformacji w zależności od typu modyfikacji cząsteczki nukleozydu.

W rybonukleozydach pirymidynowych o orientacji *anti* zaobserwowano zjawisko subtelnego "dostrajania" kąta fazowego pseudorotacji P z przedziałem wartości kąta χ co przedstawia poniższa zależność:⁸²

$$-180^{\circ} \le \chi \le -138^{\circ}$$
 dla C3'-endo
-144° $\le \chi \le -115^{\circ}$ dla C2'-endo

Efekt ten prawdopodobnie można przypisać sterycznemu odpychaniu między aksjalnie zorientowanym atomem H3' a H6 w C3'-*endo* co powoduje zwiększenie wartości kąta glikozydowego χ . Natomiast w konformacji C2'-*endo* wiązanie C3'-H3' zajmuje pozycję pseudoekwatorialną co minimalizuje oddziaływanie pomiędzy atomami H3'-H6 umożliwiając obrót wiązania glikozydowego w kierunku niższych wartości kąta χ .⁸³ Dla nukleozydów purynowych nie zaobserwowano tego typu zależności z powodu odmiennej geometrii części zasadowej.

Kolejną relacją zaobserwowaną w obrębie struktury nukleozydów pirymidynowych jest zależność długości wiązania glikozydowego C1'-N1 od kąta wiązania glikozydowego χ . ^{84,85} Stwierdzono prawie liniowy spadek długości wiązania glikozydowego z maksimum wynoszącego 1.52Å dla kąta χ w przybliżeniu równemu 180° do 1.48 Å gdy kąt χ osiaga wartość około -140°. Obserwacja ta pokazuje, iż atomy H2' i H3' nie są jedyną barierą hamującą rotację.⁸⁶ Atom O4' również wywiera wpływ na obrót wokół wiązania glikozydowego, wydłużenie C1'-N odzwierciedla steryczne oddziaływanie między O4' i atomem H6 zasady pirymidynowej. Średnia długość wiązania C1'-N1 wynosi 1.49Å. W przypadku nukleozydów purynowych długość wiązania glikozydowego jest mniej zmienna, wynosząca średnio 1.46Å.

Wyniki licznych badań uzyskanych za pomocą spektroskopii NMR i CD wskazują na istnienie w roztworach równowagi termodynamicznej *syn⇔anti*.⁸⁷⁻⁹² Badania relaksacji ultradźwiękowej (ultrasonic relaxation studies) nukleozydów purynowych wskazują na czas

2. Studia literaturowe

relaksacji rzędu 10⁻⁹s co prawdopodobnie wiąże się z rotacją wokół wiązania glikozydowego.^{93,94} Temperaturowa zależność procesu relaksacji pozwoliła uzyskać termodynamiczne parametry opisujące równowagę syn (chanti. W przypadku nukleozydów pirymidynowych nie rejestrowano żadnej absorpcji w zakresie częstotliwości od 10 do 250MHz, co można przypisać wiekszemu zahamowaniu rotacji wiazania glikozydowego nukleozydów pirymidynowych w porównaniu z nukleozydami purynowymi. Ponadto dane NMR również potwierdzają wzajemną zależność typu nukleozydu, pofałdowania cukru oraz orientacji wokół wiązania glikozydowego. Nukleozydy purynowe wykazują prawie identyczną preferencję do przyjmowania obu orientacji syn i anti, w przeciwieństwie do nukleozydów pirymidynowych preferujących zdecydowanie orientację anti. Generalnie orientacja anti wykazuje tendencję do występowania z pofałdowaniem cukru typu C3'-endo w rybonukleozydach, natomiast w 2'-deoksyrybonukleozydach zaobserwowano preferencje do przyjmowania pofałdowania typu C2'-endo. W nukleozydach purynowych orientacja syn występuje razem z konformerem C2'-endo, jednak w nukleozydach pirymidynowych o orientacji syn wymuszonej przez obecność dodatkowego podstawnika metylowego w pozycji C-6 zaobserwowano występowanie konformeru C3'-endo w obu typach cukrów.95

Wyniki obliczeń kwantowomechanicznych (PCILO) preferencji konformacyjnych nukleozydów purynowych wykazują zbieżność z danymi eksperymentalnymi tj. korelację orientacji syn z pofałdowaniem typu C2'-endo podczas gdy C3'-endo jest energetycznie mniej uprzywilejowane o 1-2 kcal/mol; równomierny rozkład populacji obu konformerów C2'-endo i C3'-endo dla orientacji anti.96 Natomiast dla nukleozydów pirymidynowych o orientacji syn oba typy pofałdowań sa energetycznie równoważne, a w orientacji anti C3'endo jest energetycznie bardziej uprzywilejowany od C2'-endo. Ponadto wyniki powyższych obliczeń sugerują dla nukleozydów purynowych zakres dozwolonych wartości kąta χ w granicach od 180° do -60° tzn. od anti (ap) do high-anti (-sc).⁹⁷ W przypadku nukleozydów pirymidynowych zakres wartości kąta χ jest bardziej ograniczony do regionu *ap* (180°). Różnice w preferencjach wartości kąta χ w obu typach nukleozydów można powiązać z różnicami siły oddziaływania sterycznego między protonami części cukrowej (H2', H3') a H6 pirymidyn i H8 puryn gdy kąt χ przyjmuje wartość około -120°.⁹⁷ Potwierdzeniem tego przypuszczenia jest konformacja 6-azaurydyny przyjmującej niedozwoloną dla naturalnych nukleozydów pirymidynowych orientację high-anti (-sc). Podobne wyniki uzyskano dla modyfikowanych nukleozydów 8-azapurynowych.98

2.1.4. Orientacja wokół wiązania C4'-C5'

Rotacja wokół egzocyklicznego wiązania C4'-C5' pozwala na przyjęcie przez wiązanie 5'C-O trzech głównych orientacji względem wiązania C4'-C3' określanych jako +*sc* (gauchegauche), *ap* (gauche-trans) i –*sc* (trans-gauche, **Rysunek 1C**). Występowanie rotamerów +*sc*, *ap* i –*sc* w strukturach krystalicznych nukleozydów nie jest równomierne i zależy od konformacji części cukrowej i rodzaju zasady.⁷ Generalnie autorzy ci stwierdzili w przybliżeniu równomierny rozkład rotamerów +*sc* i *ap* w nukleozydach purynowych zarówno dla pofałdowania typu C2'-*endo* jak i C3'-*endo*, oraz rzadkie występowanie rotameru –*sc* w pofałdowaniu typu C2'-*endo*. Natomiast w nukleozydach pirymidynowych autorzy nie zaobserwowali tak wyraźnej zależności jak w nukleozydach purynowych. Najczęściej preferowanym rotamerem był +*sc* bez względu na typ pofałdowania cukru. W niektórych strukturach stwierdzili obecność rotamerów –*sc* i *ap* występujących w pofałdowaniu typu C2'-*endo*.

Określenie orientacji wokół wiązania C4'-C5' w roztworach nukleozydów za pomocą spektroskopii NMR jest ograniczone do podania udziału rotameru +sc oraz mieszaniny rotamerów -sc i *ap* ze względu na niemożność rozróżnienia tych dwóch ostatnich.⁹⁹ Niemniej jednak wyniki badań potwierdziły istnienie korelacji pomiędzy typem pofałdowania cukru a orientacją wokół wiązania C4'-C5'. Dane te wskazują że dla pofałdowania typu C3'-*endo* preferowany jest głównie rotamer +sc natomiast dla C2'-*endo*- mieszanina -sc i *ap*.¹⁰⁰

Wyniki prac teoretycznych są częściowo zbieżne z danymi eksperymentalnymi w zależności od zastosowanych metod obliczeniowych. Na drodze obliczeń klasycznej energii potencjalnej oraz "hard-sphere" wykazano prawie równomierny rozkład występowania trzech rotamerów wokół wiązania C4'-C5'.¹⁰¹ Bardziej zbliżone do danych eksperymentalnych wyniki przedstawiono w pracy¹⁰² wykorzystując metody obliczeniowe oparte na mechanice kwantowej (PCILO). Autorzy wyliczyli, że rotamer +*sc* jest bardziej preferowany o 1-2 kcal/mol od pozostałych oraz że istnieje korelacja pomiędzy preferowanym rotamerem γ a pofałdowaniem cukru i typem zasady o niższej energii rzędu 0.5-1 kcal/mol. W przedstawionym obrazie mapy energii nukleozydy pirymidynowe preferują rotamer +*sc* bardziej z pofałdowaniem C3'-*endo* aniżeli C2'-*endo*, natomiast nukleozydy purynowe preferują go w mniejszym stopniu niezależnie od typu pofałdowania.

Dokładna analiza struktur uzyskanych na podstawie danych krystalograficznych ujawniła iż atom C8/C6 puryny/pirymidyny jest odległy od atomu O5' o najczęściej występujący dystans 3.1-3.3Å, natomiast suma promieni van der Waalsa atomów O i H oraz długości wiązania C-H wynosi 3.68Å dla odległości C···O.¹⁰³ Różnica pomiędzy tymi odległościami

sugeruje istnienie dodatkowego oddziaływania pomiędzy zasadą a resztą cukrową. Istotnym czynnikiem stabilizującym rotamer +sc w nukleozydach posiadających zasadę w orientacji *anti* jest wiązanie wodorowe pomiędzy atomem H6/8 puryn/pirymidyn a O5'.^{104,105} Powyższe obserwacje znajdują potwierdzenie w eksperymentach NMR wymiany z deuterem na mono- i oligonukleotydach purynowych, w których zauważono częściową kwasowość protonu H8 i interakcję z fosfoestrowym tlenem O5'.¹⁰⁶⁻¹⁰⁸ W przypadku pirymidyn zaobserwowano częściowy charakter kwasowy zarówno protonów H6 jak i H5.¹⁰⁹ Obliczenia kwantowomechaniczne (CNDO/2) energii oddziaływań C-H····O5' dla urydyny, tymidyny i 5-fluorourydyny ujawniły stabilizację rotameru +sc i orientacji *anti* w zakresie 1.84-2.27 kcal/mol.¹¹⁰ Natomiast dla adenozyny wartość energii stabilizacji wynosiła tylko 1.11 kcal/mol co potwierdza mniejszą preferencję rotameru +sc w nukleozydach purynowych w porównaniu z pirymidynowymi.

W następnych rozdziałach przeanalizuję właściwości strukturalne naturalnych i modyfikowanych nukleozydów w ciele stałym, stosując powszechnie stosowane parametry konformacyjne: P, v_{max} , χ oraz γ . Dane konformacyjne wszystkich związków zostały zebrane w Tabelach 2-7. Sposób prezentacji własności konformacyjnych jest częściowo wzorowany na pracach ^{6,7}. Podziału związków na poszczególne grupy dokonałem samodzielnie, w oparciu o ustalone przeze mnie kryteria strukturalne. Wartości P i v_{max} w zdecydowanej większości były podawane w publikacjach przez autorów. W niektórych strukturach wartości parametrów obliczałem na podstawie podanych katów torsyjnych lub korzystałem z prac ^{6,7}. Dla kata y przyjałem następująca jego definicje: O4'-C1'-N9-C8 dla puryn, O4'-C1'-N1-C6 dla pirymidyn, z kolei jako obowiazujący zakres wartości kata y przyjałem od 0° do 359°. W części prac autorzy podawali wartości kąta γ definiowanych jako: O4'-C1'-N9-C4 dla puryn, O4'-C1'-N1-C2 dla pirymidyn lub wg zakresu -180°, -90°, 0°, 90°, 180°. W takich przypadkach, w celu zachowania przejrzystości tekstu, dokonywałem stosownych obliczeń wartości kąta χ, natomiast w tabelach umieściłem wartości literaturowe. Powyższe odstępstwa zostały oznaczone odpowiednimi odnośnikami, których objaśnienia znajdują się na końcu każdej z tabel. Ze względu na znaczną liczbę związków przedstawionych w pracy, wprowadziłem osobną ich numerację dla części "Studia Literaturowe." (kursywa i czcionka pogrubiona) i dla części "Badania własne" (czcionka pogrubiona).